Regularization in Relevance Learning Vector Quantization Using l one Norms

نویسندگان

  • Martin Riedel
  • Marika Kaden
  • Fabrice Rossi
  • Thomas Villmann
چکیده

We propose in this contribution a method for l1-regularization in prototype based relevance learning vector quantization (LVQ) for sparse relevance profiles. Sparse relevance profiles in hyperspectral data analysis fade down those spectral bands which are not necessary for classification. In particular, we consider the sparsity in the relevance profile enforced by LASSO optimization. The latter one is obtained by a gradient learning scheme using a differentiable parametrized approximation of the l1-norm, which has an upper error bound. We extend this regularization idea also to the matrix learning variant of LVQ as the natural generalization of relevance learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization in relevance learning vector quantization using l1-norms

We propose in this contribution a method for l1-regularization in prototype based relevance learning vector quantization (LVQ) for sparse relevance pro les. Sparse relevance pro les in hyperspectral data analysis fade down those spectral bands which are not necessary for classi cation. In particular, we consider the sparsity in the relevance pro le enforced by LASSO optimization. The latter one...

متن کامل

Stationarity of Matrix Relevance Learning Vector Quantization

We investigate the convergence properties of heuristic matrix relevance updates in Learning Vector Quantization. Under mild assumptions on the training process, stationarity conditions can be worked out which characterize the outcome of training in terms of the relevance matrix. It is shown that the original training schemes single out one specific direction in feature space which depends on th...

متن کامل

Sparse Functional Relevance Learning in Generalized Learning Vector Quantization

Relevance learning in learning vector quantization is a central paradigm for classi cation task depending feature weighting and selection. We propose a functional approach to relevance learning for highdimensional functional data. For this purpose we compose the relevance pro le by a superposition of only a few parametrized basis functions taking into account the functional character of the dat...

متن کامل

Regularization in matrix learning

We present a regularization technique to extend recently proposed matrix learning schemes in Learning Vector Quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can display a tendency towards over-simplification in the course of training. An overly pronounced elimination of dimensions...

متن کامل

Learning Matrix Quantization and Variants of Relevance Learning

We propose an extension of the learning vector quantization framework for matrix data. Data in matrix form occur in several areas like gray-scale images, time dependent spectra or fMRI data. If the matrix data are vectorized, important spatial information may be lost. Thus, processing matrix data in matrix form seems to be more appropriate. However, it requires matrix dissimilarities for data c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1310.5095  شماره 

صفحات  -

تاریخ انتشار 2013